✏️
CPP-17-STL-Cookbook
  • Introduction
  • 前言
  • 关于本书
  • 各章梗概
  • 第1章 C++17的新特性
    • 使用结构化绑定来解包绑定的返回值
    • 将变量作用域限制在if和switch区域内
    • 新的括号初始化规则
    • 构造函数自动推导模板的类型
    • 使用constexpr-if简化编译
    • 只有头文件的库中启用内联变量
    • 使用折叠表达式实现辅助函数
  • 第2章 STL容器
    • 擦除/移除std::vector元素
    • 以O(1)的时间复杂度删除未排序std::vector中的元素
    • 快速或安全的访问std::vector实例的方法
    • 保持对std::vector实例的排序
    • 向std::map实例中高效并有条件的插入元素
    • 了解std::map::insert新的插入提示语义
    • 高效的修改std::map元素的键值
    • std::unordered_map中使用自定义类型
    • 过滤用户的重复输入,并以字母序将重复信息打印出——std::set
    • 实现简单的逆波兰表示法计算器——std::stack
    • 实现词频计数器——std::map
    • 实现写作风格助手用来查找文本中很长的句子——std::multimap
    • 实现个人待办事项列表——std::priority_queue
  • 第3章 迭代器
    • 建立可迭代区域
    • 让自己的迭代器与STL的迭代器兼容
    • 使用迭代适配器填充通用数据结构
    • 使用迭代器实现算法
    • 使用反向迭代适配器进行迭代
    • 使用哨兵终止迭代
    • 使用检查过的迭代器自动化检查迭代器代码
    • 构建zip迭代适配器
  • 第4章 Lambda表达式
    • 使用Lambda表达式定义函数
    • 使用Lambda为std::function添加多态性
    • 并置函数
    • 通过逻辑连接创建复杂谓词
    • 使用同一输入调用多个函数
    • 使用std::accumulate和Lambda函数实现transform_if
    • 编译时生成笛卡尔乘积
  • 第5章 STL基础算法
    • 容器间相互复制元素
    • 容器元素排序
    • 从容器中删除指定元素
    • 改变容器内容
    • 在有序和无序的vector中查找元素
    • 将vector中的值控制在特定数值范围内——std::clamp
    • 在字符串中定位模式并选择最佳实现——std::search
    • 对大vector进行采样
    • 生成输入序列的序列
    • 实现字典合并工具
  • 第6章 STL算法的高级使用方式
    • 使用STL算法实现单词查找树类
    • 使用树实现搜索输入建议生成器
    • 使用STL数值算法实现傅里叶变换
    • 计算两个vector的误差和
    • 使用ASCII字符曼德尔布罗特集合
    • 实现分割算法
    • 将标准算法进行组合
    • 删除词组间连续的空格
    • 压缩和解压缩字符串
  • 第7章 字符串, 流和正则表达
    • 创建、连接和转换字符串
    • 消除字符串开始和结束处的空格
    • 无需构造获取std::string
    • 从用户的输入读取数值
    • 计算文件中的单词数量
    • 格式化输出
    • 使用输入文件初始化复杂对象
    • 迭代器填充容器——std::istream
    • 迭代器进行打印——std::ostream
    • 使用特定代码段将输出重定向到文件
    • 通过集成std::char_traits创建自定义字符串类
    • 使用正则表达式库标记输入
    • 简单打印不同格式的数字
    • 从std::iostream错误中获取可读异常
  • 第8章 工具类
    • 转换不同的时间单位——std::ratio
    • 转换绝对时间和相对时间——std::chrono
    • 安全的标识失败——std::optional
    • 对元组使用函数
    • 使用元组快速构成数据结构
    • 将void*替换为更为安全的std::any
    • 存储不同的类型——std::variant
    • 自动化管理资源——std::unique_ptr
    • 处理共享堆内存——std::shared_ptr
    • 对共享对象使用弱指针
    • 使用智能指针简化处理遗留API
    • 共享同一对象的不同成员
    • 选择合适的引擎生成随机数
    • 让STL以指定分布方式产生随机数
  • 第9章 并行和并发
    • 标准算法的自动并行
    • 让程序在特定时间休眠
    • 启动和停止线程
    • 打造异常安全的共享锁——std::unique_lock和std::shared_lock
    • 避免死锁——std::scoped_lock
    • 同步并行中使用std::cout
    • 进行延迟初始化——std::call_once
    • 将执行的程序推到后台——std::async
    • 实现生产者/消费者模型——std::condition_variable
    • 实现多生产者/多消费者模型——std::condition_variable
    • 并行ASCII曼德尔布罗特渲染器——std::async
    • 实现一个小型自动化并行库——std::future
  • 第10章 文件系统
    • 实现标准化路径
    • 使用相对路径获取规范的文件路径
    • 列出目录下的所有文件
    • 实现一个类似grep的文本搜索工具
    • 实现一个自动文件重命名器
    • 实现一个磁盘使用统计器
    • 计算文件类型的统计信息
    • 实现一个工具:通过符号链接减少重复文件,从而控制文件夹大小
Powered by GitBook
On this page
  • How it's done...
  • How it works...
  • There's more...

Was this helpful?

  1. 第1章 C++17的新特性

只有头文件的库中启用内联变量

这种库在声明函数时,始终是内联的,C++17中允许声明内联变量。C++17之前只能使用其他变通的方法实现内联变量,新标准的支持让实现只有头文件的库更加的容易。

How it's done...

本节中,我们创建一个类,可以作为典型头文件库的成员。其目的就是给定一个静态成员,然后使用inline关键字对其进行修饰,使得其实例在全局范围内都能访问到,在C++17之前这样做是不可能的。

  1. process_monitor类必须包含一个静态成员,并且能全局访问。当该单元被重复包含时,会产生符号重定义的问题。

    // foo_lib.hpp
    class process_monitor {
    public:
    static const std::string standard_string{
        "some static globally available string"};
    };
    process_monitor global_process_monitor;
  2. 多个.cpp文件中包含这个头文件时,链接阶段会出错。为了修复这个问题,添加了inline关键字:

    // foo_lib.hpp
    class process_monitor {
    public:
    static const inline std::string standard_string{
        "some static globally available string"};
    };
    inline process_monitor global_process_monitor;

    瞧,就是这样!

How it works...

C++程序通常都有多个C++源文件组成(其以.cpp或.cc结尾)。这些文件会单独编译成模块/二进制文件(通常以.o结尾)。链接所有模块/二进制文件形成一个单独的可执行文件,或是动态库/静态库则是编译的最后一步。

当链接器发现一个特定的符号,被定义了多次时就会报错。举个栗子,现在我们有一个函数声明int foo();,当我们在两个模块中定义了同一个函数,那么哪一个才是正确的呢?链接器自己不能做主。这样没错,但是这也可能不是开发者想看到的。

如果这是唯一的方法,就不需要只有头文件的库了。只有头文件的库非常方便,因为只需要使用#include语句将对应的头文件包含入C++源文件/头文件中后,就可以使用这个库了。当提供普通库时,开发者需要编写相应的编译脚本,以便连接器将库模块链接在一起,形成对应的可执行文件。这种方式对于很小的库来说是不必要的。

对于这样例子,inline关键字就能解决不同的模块中使用同一符号采用不同实现的方式。当连接器找到多个具有相同签名的符号时,这些函数定义使用inline进行声明,链接器就会选择首先找到的那个实现,然后认为其他符号使用的是相同的定义。所有使用inline定义的符号都是完全相同的,对于开发者来说这应该是常识。

我们的例子中,连接器将会在每个模块中找到process_monitor::standard_string符号,因为这些模块包含了foo_lib.hpp。如果没有了inline关键字,连接器将不知道选择哪个实现,所以其会将编译过程中断并报错。同样的原理也适用于global_process_monitor符号。

使用inline声明所有符号之后,连接器只会接受其找到的第一个符号,而将后续该符号的不同实现丢弃。

C++17之前,解决的方法是通过额外的C++模块文件提供相应的符号,这将迫使我们的库用户强制在链接阶段包含该文件。

传统的inline关键字还有另外一种功能。其会告诉编译器,可以通过实现直接放在调用它的地方来消除函数调用的过程。这样的话,代码中的函数调用会减少,这样我们会认为程序会运行的更快。如果函数非常短,那么生成的程序段也会很短(假设函数调用也需要若干个指令,保护现场等操作,其耗时会高于实际工作的代码)。当内联函数非常长,那么二进制文件的大小就会变得很大,有时并无法让代码运行的更快。因此,编译器会将inline关键字作为一个提示,可能会对内联函数消除函数调用。当然,编译器也会将一些函数进行内联,尽管开发者没有使用inline进行提示。

There's more...

C++17之前的解决方法就是将对应函数声明为静态函数,这个函数会返回某个静态对象的引用:

class foo{
public:
    static std::string& standard_string(){
        static std::string s{"some standard string"};
        return s;
    }    
};

通过这种方式,将头文件包含在多个模块中是完全合法的,但仍然可以访问相同的实例。不过,对象并没有在程序开始时立即构造,而是在第一次调用这个获取函数时才进行构造。对于一些特定的情况来说,这也个问题。假设我们想要在程序开始时就构造静态和全局函数,从而完成一些比较重要的事情(就和我们的例程库一样),不过当程序运行后,在调用时去构造这些对象,就会带来比较大的性能开销。

另一个解决方法是将非模板类看做一个模板类,因此非模板类也适用于这项规则。

不过,以上的两种策略在C++17中不太适用了,C++17已经使用新的inline完美解决。

Previous使用constexpr-if简化编译Next使用折叠表达式实现辅助函数

Last updated 4 years ago

Was this helpful?

为了能提供全局可以使用的方法,通常会在头文件中定义函数,这可以让C++的所有模块都调用头文件中函数的实现(C++中,头文件中实现的函数,编译器会隐式的使用inline来进行修饰,从而避免符号重复定义的问题)。这样就可以将函数的定义单独的放入模块中。之后,就可以安全的将这些模块文件链接在一起了。这种方式也被称为(ODR,One Definition Rule)。看了下图或许能更好的理解这个规则:

定义与单一定义规则