✏️
CPP-17-STL-Cookbook
  • Introduction
  • 前言
  • 关于本书
  • 各章梗概
  • 第1章 C++17的新特性
    • 使用结构化绑定来解包绑定的返回值
    • 将变量作用域限制在if和switch区域内
    • 新的括号初始化规则
    • 构造函数自动推导模板的类型
    • 使用constexpr-if简化编译
    • 只有头文件的库中启用内联变量
    • 使用折叠表达式实现辅助函数
  • 第2章 STL容器
    • 擦除/移除std::vector元素
    • 以O(1)的时间复杂度删除未排序std::vector中的元素
    • 快速或安全的访问std::vector实例的方法
    • 保持对std::vector实例的排序
    • 向std::map实例中高效并有条件的插入元素
    • 了解std::map::insert新的插入提示语义
    • 高效的修改std::map元素的键值
    • std::unordered_map中使用自定义类型
    • 过滤用户的重复输入,并以字母序将重复信息打印出——std::set
    • 实现简单的逆波兰表示法计算器——std::stack
    • 实现词频计数器——std::map
    • 实现写作风格助手用来查找文本中很长的句子——std::multimap
    • 实现个人待办事项列表——std::priority_queue
  • 第3章 迭代器
    • 建立可迭代区域
    • 让自己的迭代器与STL的迭代器兼容
    • 使用迭代适配器填充通用数据结构
    • 使用迭代器实现算法
    • 使用反向迭代适配器进行迭代
    • 使用哨兵终止迭代
    • 使用检查过的迭代器自动化检查迭代器代码
    • 构建zip迭代适配器
  • 第4章 Lambda表达式
    • 使用Lambda表达式定义函数
    • 使用Lambda为std::function添加多态性
    • 并置函数
    • 通过逻辑连接创建复杂谓词
    • 使用同一输入调用多个函数
    • 使用std::accumulate和Lambda函数实现transform_if
    • 编译时生成笛卡尔乘积
  • 第5章 STL基础算法
    • 容器间相互复制元素
    • 容器元素排序
    • 从容器中删除指定元素
    • 改变容器内容
    • 在有序和无序的vector中查找元素
    • 将vector中的值控制在特定数值范围内——std::clamp
    • 在字符串中定位模式并选择最佳实现——std::search
    • 对大vector进行采样
    • 生成输入序列的序列
    • 实现字典合并工具
  • 第6章 STL算法的高级使用方式
    • 使用STL算法实现单词查找树类
    • 使用树实现搜索输入建议生成器
    • 使用STL数值算法实现傅里叶变换
    • 计算两个vector的误差和
    • 使用ASCII字符曼德尔布罗特集合
    • 实现分割算法
    • 将标准算法进行组合
    • 删除词组间连续的空格
    • 压缩和解压缩字符串
  • 第7章 字符串, 流和正则表达
    • 创建、连接和转换字符串
    • 消除字符串开始和结束处的空格
    • 无需构造获取std::string
    • 从用户的输入读取数值
    • 计算文件中的单词数量
    • 格式化输出
    • 使用输入文件初始化复杂对象
    • 迭代器填充容器——std::istream
    • 迭代器进行打印——std::ostream
    • 使用特定代码段将输出重定向到文件
    • 通过集成std::char_traits创建自定义字符串类
    • 使用正则表达式库标记输入
    • 简单打印不同格式的数字
    • 从std::iostream错误中获取可读异常
  • 第8章 工具类
    • 转换不同的时间单位——std::ratio
    • 转换绝对时间和相对时间——std::chrono
    • 安全的标识失败——std::optional
    • 对元组使用函数
    • 使用元组快速构成数据结构
    • 将void*替换为更为安全的std::any
    • 存储不同的类型——std::variant
    • 自动化管理资源——std::unique_ptr
    • 处理共享堆内存——std::shared_ptr
    • 对共享对象使用弱指针
    • 使用智能指针简化处理遗留API
    • 共享同一对象的不同成员
    • 选择合适的引擎生成随机数
    • 让STL以指定分布方式产生随机数
  • 第9章 并行和并发
    • 标准算法的自动并行
    • 让程序在特定时间休眠
    • 启动和停止线程
    • 打造异常安全的共享锁——std::unique_lock和std::shared_lock
    • 避免死锁——std::scoped_lock
    • 同步并行中使用std::cout
    • 进行延迟初始化——std::call_once
    • 将执行的程序推到后台——std::async
    • 实现生产者/消费者模型——std::condition_variable
    • 实现多生产者/多消费者模型——std::condition_variable
    • 并行ASCII曼德尔布罗特渲染器——std::async
    • 实现一个小型自动化并行库——std::future
  • 第10章 文件系统
    • 实现标准化路径
    • 使用相对路径获取规范的文件路径
    • 列出目录下的所有文件
    • 实现一个类似grep的文本搜索工具
    • 实现一个自动文件重命名器
    • 实现一个磁盘使用统计器
    • 计算文件类型的统计信息
    • 实现一个工具:通过符号链接减少重复文件,从而控制文件夹大小
Powered by GitBook
On this page
  • How to do it...
  • How it works...
  • There's more...

Was this helpful?

  1. 第3章 迭代器

使用检查过的迭代器自动化检查迭代器代码

Previous使用哨兵终止迭代Next构建zip迭代适配器

Last updated 4 years ago

Was this helpful?

迭代器很有用,能提供一般化的接口供用户使用。不过,迭代器经常被当做指针误用。当指针指向一个非法的内存位置时,不能进行解引用。这对迭代器也适用,不过有大量的条件来界定迭代器指向的位置是否合法。这些可以通过看一下STL文档就能了解到,但是还会写出很容易出现bug的代码。

最好的情况是,这些问题没有在客户的机器上出现,而是开发者测试这些程序时就能暴露出来。不过,通常即使是解引用了悬垂指针和错误的迭代器,代码也不会报错。这种情况是最糟的,因为这种未定义行为的代码,没法确定会发生什么。

幸运的是,有工具可以帮助我们。GUN STL有调试模式可选,GUN C++编译器和LLVM clang C++编译器都提供这样的库,其会为我们生成具有调试信息的二进制程序,可以让错误更容易暴露出来。这种库非常容易使用,并且特别有用,我们将在本节展示。Microsoft Visual C++标准库还提供了更多的检查项。

How to do it...

本节我们将使用迭代器故意访问一个非法位置:

  1. 包含头文件。

    #include <iostream>
    #include <vector>
  2. 首先实例化一个整型类vector,并且让指针指向值1。我们使用shrink_to_fit()将vector的容积设置为3,多分配的内存是不必要的,小一点的存储空间会让迭代速度更快:

    int main()
    {
        std::vector<int> v {1, 2, 3};
        v.shrink_to_fit();
        const auto it (std::begin(v));
  3. 然后解引用迭代器,打印相应的内容:

        std::cout << *it << '\n';
  4. 接下来,让我们向vector中增加一个新数。这样vector的长度就不够再放下另外一个数,这里vector会自动增加其长度。通过分配一个新的更大的内存块来实现长度的增加,会将所有现存的项移到新的块,然后删除旧的内存块。

        v.push_back(123);
  5. 现在,让我们再次通过迭代器从1开始打印vector。这就坏了。为什么呢?因为在vector自增的过程中,会分配新的内存,删除旧的内存,但是迭代器却不知道这个改变。这就意味着,迭代器将会指向旧地址,并且我们不知道这样做会怎样。

        std::cout << *it << '\n'; // bad bad bad!
    }
  6. 编译变这个程序并运行,我们不会看到任何错误,不过迭代器解引用所打印出来的数字看上去像是随机数。看上去没有问题,反而最有问题。如果不指出来,可能没人会发现问题。

  7. 这时调试工具就派上了用场。GUN STL支持一种预处理宏_GLIBCXX_DEBUG,其会激活STL中对健壮性检查的代码。这会让程序变慢,不过更容易找到Bug。我们可以通过-D_GLIBCXX_DEBUG编译选项来启用这些代码,或者在代码的最开始加上这个宏。如你所见,其输出相关的错误信息,并关闭了应用的进程。Microsoft Visual C++ 编译器可以通过/D_ITERATOR_DEBUG_LEVEL=1启用检查。

  8. LLVM/clang实现的STL也有调试标识,其目的是为了调试STL代码,而非用户的代码。对于用户的代码的调试,我们会使用不同的选项来调试。向clang编译器传入-fsanitize=address -fsanitize=undefined,可以看看会发生什么:

WOW!clang编译器对于运行错误的描述非常详细。由于信息非常的多,这里只截取其中一部分。当然,这个选项并不是clang独有的特性,对于GCC同样适用。

Note:

一些运行时的问题是因为一些库的丢失,编译器不会将libasan和libubsan( AddressSanitizer内存检测工具)自动添加到程序中,需要通过包管理器或类似的工具进行安装。

How it works...

如我们之前所见,我们不需要通过修改任何代码,只需要通过为编译器添加一些编译器特性就能容易的找到代码中的Bug。

这些特性由调试器实现。一个调试器通常由一个编译器模块和一个运行时库组成。当调试器被激活时,编译器将会添加额外的信息到我们的代码中,然后形成二进制可执行文件。在运行时,调试器库由二进制文件自己去链接,例如:对应库实现会代替malloc和free函数,来分析程序到底想要多少内存。

调试器可以检测不同类型的Bug。这里只列举出一些常用的类型:

  • 越界访问: 当我们访问类似数组和vector类型的数据结构时,判别我们访问的位置是否在合法范围内。

  • 释放后使用: 当我们释放了堆上分配的指针后,再使用这个指针,则会出发这个Bug。

  • 整数溢出: 不同的机器上整数表达的范围可能是不同的,所以就会出现一些值使用整型无法进行表示。对于有符号整型,算法通常会出发一个未定义的行为。

  • 指针对齐: 一些架构中,需要指针以某种形式进行对齐,否则无法访问对应的地址。

当然,我们还能检测到更多类型的Bug。

不过,激活所有的调试器不太可行,因为这样会导致程序运行的非常缓慢。不过,在单元测试和集成测试中,激活调试器是一个很好的方式。

There's more...

对于不同类型的Bug,调试器的种类也是多种多样,并且还有很多调试器还在开发中。我们可以上网了解更多的信息,以便我们自己去调试程序。GCC和LLVM网站首页就列举了很多调试器,可以从在线文档中了解其调试能力:

使用调试器对程序进行整体测试是每个开发者都应该具有的意识。不过,在大多数公司中,开发者并没有这样的意识,即便是我们知道所有恶意软件和计算机病毒最重要的入口就是程序的Bug。

当时是一个开发新手时,看一下你的团队中是否有使用调试器的可能。如果没有,那你上班的第一天就有机会修复那些重大的Bug,并发现隐藏的Bug。

可在目录中寻找调试器

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
http://clang.llvm.org/docs/index.html